Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.253
Filter
1.
Mol Biol Rep ; 51(1): 572, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722394

ABSTRACT

BACKGROUND: Alzheimer's disease is a leading neurological disorder that gradually impairs memory and cognitive abilities, ultimately leading to the inability to perform even basic daily tasks. Teriflunomide is known to preserve neuronal activity and protect mitochondria in the brain slices exposed to oxidative stress. The current research was undertaken to investigate the teriflunomide's cognitive rescuing abilities against scopolamine-induced comorbid cognitive impairment and its influence on phosphatidylinositol-3-kinase (PI3K) inhibition-mediated behavior alteration in mice. METHODS: Swiss albino mice were divided into 7 groups; vehicle control, scopolamine, donepezil + scopolamine, teriflunomide (10 mg/kg) + scopolamine; teriflunomide (20 mg/kg) + scopolamine, LY294002 and LY294002 + teriflunomide (20 mg/kg). Mice underwent a nine-day protocol, receiving scopolamine injections (2 mg/kg) for the final three days to induce cognitive impairment. Donepezil, teriflunomide, and LY294002 treatments were given continuously for 9 days. MWM, Y-maze, OFT and rota-rod tests were conducted on days 7 and 9. On the last day, blood samples were collected for serum TNF-α analysis, after which the mice were sacrificed, and brain samples were harvested for oxidative stress analysis. RESULTS: Scopolamine administration for three consecutive days increased the time required to reach the platform in the MWM test, whereas, reduced the percentage of spontaneous alternations in the Y-maze, number of square crossing in OFT and retention time in the rota-rod test. In biochemical analysis, scopolamine downregulated the brain GSH level, whereas it upregulated the brain TBARS and serum TNF-α levels. Teriflunomide treatment effectively mitigated all the behavioral and biochemical alterations induced by scopolamine. Furthermore, LY294002 administration reduced the memory function and GSH level, whereas, uplifted the serum TNF-α levels. Teriflunomide abrogated the memory-impairing, GSH-lowering, and TNF-α-increasing effects of LY294002. CONCLUSION: Our results delineate that the improvement in memory, locomotion, and motor coordination might be attributed to the oxidative and inflammatory stress inhibitory potential of teriflunomide. Moreover, PI3K inhibition-induced memory impairment might be attributed to reduced GSH levels and increased TNF-α levels.


Subject(s)
Cognitive Dysfunction , Crotonates , Hydroxybutyrates , Nitriles , Oxidative Stress , Toluidines , Animals , Nitriles/pharmacology , Mice , Hydroxybutyrates/pharmacology , Crotonates/pharmacology , Toluidines/pharmacology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Oxidative Stress/drug effects , Male , Disease Models, Animal , Maze Learning/drug effects , Behavior, Animal/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Scopolamine/pharmacology , Chromones/pharmacology , Memory/drug effects , Cognition/drug effects , Brain/metabolism , Brain/drug effects , Morpholines/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Donepezil/pharmacology
2.
Antonie Van Leeuwenhoek ; 117(1): 75, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700529

ABSTRACT

Biogenic nanoparticles (NPs) have emerged as promising therapeutic formulations in effective drug delivery. Despite of various positive attributes, these NPs are often conjugated with various cytotoxic organic fluorophores for bioimaging, thereby reducing its effectiveness as a potential carrier. Herein, we aim to formulate biogenic fluorescent pigmented polyhydroxybutyrate (PHB) NPs from Rhodanobacter sp. strain KT31 (OK001852) for drug delivery. The bacterial strain produced 0.5 g L-1 of polyhydroxyalkanoates (PHAs) from 2.04 g L-1 of dry cell weight (DCW) under optimised conditions via submerged fermentation. Further, structural, thermal, and morphological charactersiation of the extracted PHAs was conducted using advance analytical technologies. IR spectra at 1719.25 cm-1 confirmed presence of C = O functional group PHB. NMR and XRD analysis validated the chemical structure and crystallinity of PHB. TG-DTA revealed Tm (168 °C), Td (292 °C), and Xc (35%) of the PHB. FE-SEM imaging indicated rough surface of the PHB film and the biodegradability was confirmed from open windro composting. WST1 assay showed no significant cell death (> 50%) from 100 to 500 µg/mL, endorsing non-cytotoxic nature of PHB. PHB NPs were uniform, smooth and spherical with size distribution and mean zeta potential 44.73 nm and 0.5 mV. IR and XRD peaks obtained at 1721.75 cm-1 and 48.42 Å denoted C = O and crystalline nature of PHB. Cell proliferation rate of PHB NPs was quite significant at 50 µg/mL, establishing the non-cytotoxic nature of NPs. Further, in vitro efficacy of the PHB NPs needs to be evaluated prior to the biomedical applications.


Subject(s)
Nanoparticles , Polyhydroxyalkanoates , Prohibitins , Nanoparticles/chemistry , Polyhydroxyalkanoates/chemistry , Polyhydroxyalkanoates/metabolism , Drug Delivery Systems , Hydroxybutyrates/chemistry , Hydroxybutyrates/metabolism , Humans , Rhodospirillaceae/metabolism , Rhodospirillaceae/chemistry , Drug Carriers/chemistry
3.
J Hazard Mater ; 471: 134348, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38653138

ABSTRACT

This study ventures into the exploration of potential poly-3-hydroxybutyrate (PHB) degradation in alpine environments. PHB-degrading bacteria were identified in both campus soil, representing a residential area, and Mt. Kurodake soil, an alpine region in Hokkaido, Japan. Next-generation sequencing analysis indicated that the campus soil exhibited higher microbial diversity, while Ralstonia insidiosa C1, isolated from Mt. Kurodake soil, displayed the highest proficiency in PHB degradation. R. insidiosa C1 efficiently degraded up to 3% (w/v) of PHB and various films composed of other biopolymers at 14 °C. This bacterium synthesized homopolymers using substrates such as 3-hydroxybutyric acid, sugars, and acetic acid, while also produced copolymers using a mixture of fatty acids. The analysis results confirmed that the biopolymer synthesized by strain C1 using glucose was PHB, with physical properties comparable to commercial products. The unique capabilities of R. insidiosa C1, encompassing both the production and degradation of bioplastics, highlight its potential to establish a novel material circulation model.


Subject(s)
Biodegradation, Environmental , Hydroxybutyrates , Polyhydroxyalkanoates , Ralstonia , Soil Microbiology , Ralstonia/metabolism , Ralstonia/genetics , Polyhydroxyalkanoates/metabolism , Hydroxybutyrates/metabolism , Hydroxybutyrates/chemistry , Polyesters/metabolism , Polyesters/chemistry , Japan , Polyhydroxybutyrates
4.
Chemosphere ; 356: 141950, 2024 May.
Article in English | MEDLINE | ID: mdl-38599326

ABSTRACT

Due to their excellent properties, polyhydroxyalkanoates are gaining increasing recognition in the biodegradable polymer market. These biogenic polyesters are characterized by high biodegradability in multiple environments, overcoming the limitation of composting plants only and their versatility in production. The most consolidated techniques in the literature or the reference legislation for the physical, chemical and mechanical characterisation of the final product are reported since its usability on the market is still linked to its quality, including the biodegradability certificate. This versatility makes polyhydroxyalkanoates a promising prospect with the potential to replace fossil-based thermoplastics sustainably. This review analyses and compares the physical, chemical and mechanical properties of poly-ß-hydroxybutyrate and poly-ß-hydroxybutyrate-co-ß-hydroxyvalerate, indicating their current limitations and strengths. In particular, the copolymer is characterised by better performance in terms of crystallinity, hardness and workability. However, the knowledge in this area is still in its infancy, and the selling prices are too high (9-18 $ kg-1). An analysis of the main extraction techniques, established and in development, is also included. Solvent extraction is currently the most widely used method due to its efficiency and final product quality. In this context, the extraction phase of the biopolymer production process remains a major challenge due to its high costs and the need to use non-halogenated toxic solvents to improve the production of good-quality bioplastics. The review also discusses all fundamental parameters for optimising the process, such as solubility and temperature.


Subject(s)
Biodegradation, Environmental , Polyesters , Polyhydroxyalkanoates , Polyhydroxybutyrates , Polyesters/chemistry , Solvents/chemistry , Hydroxybutyrates/chemistry
5.
Article in Russian | MEDLINE | ID: mdl-38676683

ABSTRACT

OBJECTIVE: To evaluate the efficacy and safety of the anti-CD20 monoclonal antibody divozilimab (DIV) used as an intravenous infusion at a dose of 500 mg every 24 weeks during 100 weeks for the treatment of patients with multiple sclerosis (MS), including relapsing-remitting multiple sclerosis (RRMS) and secondary progressive MS (SPMS) with relapses. MATERIAL AND METHODS: The multicenter, randomized, double-blind and double-masked phase III clinical trial (CT) BCD-132-4/MIRANTIBUS (NCT05385744) included 338 adult patients with MS distributed in a 1:1 ratio into two groups: DIV 500 mg and teriflunomide (TRF) 14 mg. After screening, subjects were included in the main CT period, which consisted of two cycles of therapy over 48 weeks, then entered an additional period from weeks 49 to 100, which included three cycles of therapy. The efficacy was assessed based on the results of brain MRI and registration of data on relapses. RESULTS: 308 subjects completed 5 therapy cycles according to the study protocol. An analysis of the effectiveness of DIV therapy over 2 years showed a persistent suppression of MRI and clinical activity of the disease in comparison with TRF, which was confirmed by all the studied MRI indicators (including CUA; total number of gadolinium-enhancing (GdE) lesions on T1-weighted scans ; number of new or enlarged lesions on T2-weighted scans; lesions volume change on T2-weighted scans; change in the volume of hypointense lesions on T1-weighted scans). The use of DIV was associated with a statistically significant decrease in ARR compared to TRF (p=0.0001). The ARR in the DIV group was 0.057, in the TRF group - 0.164 with 95% confidential interval for the frequency ratio [0.202; 0.593]. The incidence of GdE lesions on T1-weighted scans in the DIV group was significantly lower than in the TRF group. The average number of such lesions was 0.0±0.08 and 1.0±4.46 in the DIV and TRF groups, respectively (p<0.0001). Progression of EDSS was detected in 18 (10.7%) and 36 (21.3%) patients in the DIV and TRF groups, respectively (p=0.0075). The proportion of patients with relapses was 11.2% (n=19) in the DIV group and 23.1% (n=39) in the TRF group (p=0.0039). In the subpopulation of patients with SPMS, no cases of increase in EDSS were detected, and not a single case of exacerbation was recorded over 2 years of using DIV. Also, DIV has shown a favorable safety profile. Among the adverse reactions (AR), infusion reactions and laboratory abnormalities, such as a decrease in the number of leukocytes, neutrophils, and lymphocytes, were most often recorded. Identified AR were expected, had mild to moderate severity, and resolved without any negative consequences. CONCLUSION: The results of the BCD-132-4/MIRANTIBUS CT indicate a high sustained efficacy and safety of long-term use of DIV in comparison with TRF during 2 years of therapy.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Nitriles , Humans , Male , Female , Double-Blind Method , Adult , Treatment Outcome , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis/drug therapy , Magnetic Resonance Imaging , Crotonates/therapeutic use , Crotonates/adverse effects , Hydroxybutyrates , Toluidines/therapeutic use , Toluidines/adverse effects
6.
Appl Microbiol Biotechnol ; 108(1): 310, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662130

ABSTRACT

Poly-hydroxybutyrate (PHB) is an environmentally friendly alternative for conventional fossil fuel-based plastics that is produced by various microorganisms. Large-scale PHB production is challenging due to the comparatively higher biomanufacturing costs. A PHB overproducer is the haloalkaliphilic bacterium Halomonas campaniensis, which has low nutritional requirements and can grow in cultures with high salt concentrations, rendering it resistant to contamination. Despite its virtues, the metabolic capabilities of H. campaniensis as well as the limitations hindering higher PHB production remain poorly studied. To address this limitation, we present HaloGEM, the first high-quality genome-scale metabolic network reconstruction, which encompasses 888 genes, 1528 reactions (1257 gene-associated), and 1274 metabolites. HaloGEM not only displays excellent agreement with previous growth data and experiments from this study, but it also revealed nitrogen as a limiting nutrient when growing aerobically under high salt concentrations using glucose as carbon source. Among different nitrogen source mixtures for optimal growth, HaloGEM predicted glutamate and arginine as a promising mixture producing increases of 54.2% and 153.4% in the biomass yield and PHB titer, respectively. Furthermore, the model was used to predict genetic interventions for increasing PHB yield, which were consistent with the rationale of previously reported strategies. Overall, the presented reconstruction advances our understanding of the metabolic capabilities of H. campaniensis for rationally engineering this next-generation industrial biotechnology platform. KEY POINTS: A comprehensive genome-scale metabolic reconstruction of H. campaniensis was developed. Experiments and simulations predict N limitation in minimal media under aerobiosis. In silico media design increased experimental biomass yield and PHB titer.


Subject(s)
Halomonas , Hydroxybutyrates , Nitrogen , Polyesters , Polyhydroxybutyrates , Halomonas/metabolism , Halomonas/genetics , Halomonas/growth & development , Nitrogen/metabolism , Hydroxybutyrates/metabolism , Polyesters/metabolism , Metabolic Networks and Pathways/genetics , Biomass , Glucose/metabolism
7.
Nat Commun ; 15(1): 3267, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627361

ABSTRACT

In vitro biotransformation (ivBT) facilitated by in vitro synthetic enzymatic biosystems (ivSEBs) has emerged as a highly promising biosynthetic platform. Several ivSEBs have been constructed to produce poly-3-hydroxybutyrate (PHB) via acetyl-coenzyme A (acetyl-CoA). However, some systems are hindered by their reliance on costly ATP, limiting their practicality. This study presents the design of an ATP-free ivSEB for one-pot PHB biosynthesis via acetyl-CoA utilizing starch-derived maltodextrin as the sole substrate. Stoichiometric analysis indicates this ivSEB can self-maintain NADP+/NADPH balance and achieve a theoretical molar yield of 133.3%. Leveraging simple one-pot reactions, our ivSEBs achieved a near-theoretical molar yield of 125.5%, the highest PHB titer (208.3 mM, approximately 17.9 g/L) and the fastest PHB production rate (9.4 mM/h, approximately 0.8 g/L/h) among all the reported ivSEBs to date, and demonstrated easy scalability. This study unveils the promising potential of ivBT for the industrial-scale production of PHB and other acetyl-CoA-derived chemicals from starch.


Subject(s)
Hydroxybutyrates , Polyhydroxybutyrates , Polysaccharides , Starch , Acetyl Coenzyme A/metabolism , Starch/metabolism , Hydroxybutyrates/metabolism , Polyesters/metabolism , NADP/metabolism , Biotransformation
9.
J Am Heart Assoc ; 13(8): e033628, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38563382

ABSTRACT

BACKGROUND: The ketone body 3-hydroxybutyrate (3-OHB) increases cardiac output (CO) by 35% to 40% in healthy people and people with heart failure. The mechanisms underlying the effects of 3-OHB on myocardial contractility and loading conditions as well as the cardiovascular effects of its enantiomeric forms, D-3-OHB and L-3-OHB, remain undetermined. METHODS AND RESULTS: Three groups of 8 pigs each underwent a randomized, crossover study. The groups received 3-hour infusions of either D/L-3-OHB (racemic mixture), 100% L-3-OHB, 100% D-3-OHB, versus an isovolumic control. The animals were monitored with pulmonary artery catheter, left ventricle pressure-volume catheter, and arterial and coronary sinus blood samples. Myocardial biopsies were evaluated with high-resolution respirometry, coronary arteries with isometric myography, and myocardial kinetics with D-[11C]3-OHB and L-[11C]3-OHB positron emission tomography. All three 3-OHB infusions increased 3-OHB levels (P<0.001). D/L-3-OHB and L-3-OHB increased CO by 2.7 L/min (P<0.003). D-3-OHB increased CO nonsignificantly (P=0.2). Circulating 3-OHB levels correlated with CO for both enantiomers (P<0.001). The CO increase was mediated through arterial elastance (afterload) reduction, whereas contractility and preload were unchanged. Ex vivo, D- and L-3-OHB dilated coronary arteries equally. The mitochondrial respiratory capacity remained unaffected. The myocardial 3-OHB extraction increased only during the D- and D/L-3-OHB infusions. D-[11C]3-OHB showed rapid cardiac uptake and metabolism, whereas L-[11C]3-OHB demonstrated much slower pharmacokinetics. CONCLUSIONS: 3-OHB increased CO by reducing afterload. L-3-OHB exerted a stronger hemodynamic response than D-3-OHB due to higher circulating 3-OHB levels. There was a dissocitation between the myocardial metabolism and hemodynamic effects of the enantiomers, highlighting L-3-OHB as a potent cardiovascular agent with strong hemodynamic effects.


Subject(s)
Hydroxybutyrates , Tomography, X-Ray Computed , Humans , Swine , Animals , 3-Hydroxybutyric Acid/pharmacology , Cross-Over Studies , Hydroxybutyrates/pharmacology , Heart , Ketone Bodies/metabolism
10.
Biomolecules ; 14(4)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38672520

ABSTRACT

Ethyl (S)-4-chloro-3-hydroxybutyrate ((S)-CHBE) is an important chiral intermediate in the synthesis of the cholesterol-lowering drug atorvastatin. Studying the use of SpyTag/SpyCatcher and SnoopTag/SnoopCatcher systems for the asymmetric reduction reaction and directed coupling coenzyme regeneration is practical for efficiently synthesizing (S)-CHBE. In this study, Spy and Snoop systems were used to construct a double-enzyme directed fixation system of carbonyl reductase (BsCR) and glucose dehydrogenase (BsGDH) for converting 4-chloroacetoacetate (COBE) to (S)-CHBE and achieving coenzyme regeneration. We discussed the enzymatic properties of the immobilized enzyme and the optimal catalytic conditions and reusability of the double-enzyme immobilization system. Compared to the free enzyme, the immobilized enzyme showed an improved optimal pH and temperature, maintaining higher relative activity across a wider range. The double-enzyme immobilization system was applied to catalyze the asymmetric reduction reaction of COBE, and the yield of (S)-CHBE reached 60.1% at 30 °C and pH 8.0. In addition, the double-enzyme immobilization system possessed better operational stability than the free enzyme, and maintained about 50% of the initial yield after six cycles. In summary, we show a simple and effective strategy for self-assembling SpyCatcher/SnoopCatcher and SpyTag/SnoopTag fusion proteins, which inspires building more cascade systems at the interface. It provides a new method for facilitating the rapid construction of in vitro immobilized multi-enzyme complexes from crude cell lysate.


Subject(s)
Enzymes, Immobilized , Glucose 1-Dehydrogenase , Glucose 1-Dehydrogenase/metabolism , Glucose 1-Dehydrogenase/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Biocatalysis , Hydrogen-Ion Concentration , Hydroxybutyrates/chemistry , Temperature , Catalysis , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Carbonyl Reductase (NADPH)/metabolism , Carbonyl Reductase (NADPH)/chemistry
11.
Biochem Soc Trans ; 52(2): 671-679, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38630434

ABSTRACT

Inorganic polyphosphate (polyP) is widely recognized for playing important roles and processes involved in energy and phosphate storage, regulation of gene expression, and calcium signaling. The less well-known role of polyP is as a direct mediator of ion transport across biological membranes. Here, we will briefly summarize current knowledge of the molecular mechanisms of how polyP can be involved in membrane ion transport. We discuss three types of mechanisms that might involve polyP: (1) formation of non-protein channel complex that includes calcium, polyP, and polyhydroxybutyrate (PHB); (2) modulation of the channel activity of PHBlated protein channels; and (3) direct effects of polyP on the function of the voltage-gated ion channels in the process that do not involve PHB.


Subject(s)
Ion Transport , Polyphosphates , Polyphosphates/metabolism , Humans , Cell Membrane/metabolism , Prohibitins , Animals , Calcium/metabolism , Hydroxybutyrates/metabolism , Ion Channels/metabolism
12.
Front Immunol ; 15: 1343531, 2024.
Article in English | MEDLINE | ID: mdl-38558796

ABSTRACT

Objectives: The aims of this study were to report the effectiveness and safety of teriflunomide in Chinese patients with relapsing-remitting multiple sclerosis (RRMS) and to explore the association of paramagnetic rim lesion (PRL) burden with patient outcome in the context of teriflunomide treatment and the impact of teriflunomide on PRL burden. Methods: This is a prospective observational study. A total of 100 RRMS patients treated with teriflunomide ≥3 months were included in analyzing drug persistence and safety. Among them, 96 patients treated ≥6 months were included in assessing drug effectiveness in aspects of no evidence of disease activity (NEDA) 3. The number and total volume of PRL were calculated in 76 patients with baseline susceptibility-weighted imaging (SWI), and their association with NEDA3 failure during teriflunomide treatment was investigated. Results: Over a treatment period of 19.7 (3.1-51.7) months, teriflunomide reduced annualized relapse rate (ARR) from 1.1 ± 0.8 to 0.3 ± 0.5, and Expanded Disability Status Scale (EDSS) scores remained stable. At month 24, the NEDA3% and drug persistence rate were 43.8% and 65.1%, respectively. In patients with a baseline SWI, 81.6% had at least 1 PRL, and 42.1% had ≥4 PRLs. The total volume of PRL per patient was 0.3 (0.0-11.5) mL, accounting for 2.3% (0.0%-49.0%) of the total T2 lesion volume. Baseline PRL number ≥ 4 (OR = 4.24, p = 0.009), younger onset age (OR = 0.94, p = 0.039), and frequent relapses in initial 2 years of disease (OR = 13.40, p = 0.026) were associated with NEDA3 failure. The PRL number and volume were not reduced (p = 0.343 and 0.051) after teriflunomide treatment for more than 24 months. No new safety concerns were identified in this study. Conclusion: Teriflunomide is effective in reducing ARR in Chinese patients with RRMS. Patients with less PRL burden, less frequent relapses, and relatively older age are likely to benefit more from teriflunomide, indicating that PRL might be a valuable measurement to inform clinical treatment decision.


Subject(s)
Hydroxybutyrates , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Nitriles , Toluidines , Humans , Multiple Sclerosis/drug therapy , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Crotonates/therapeutic use , Recurrence
13.
Mult Scler Relat Disord ; 85: 105539, 2024 May.
Article in English | MEDLINE | ID: mdl-38574721

ABSTRACT

BACKGROUND: Real-world effectiveness can vary across oral disease-modifying agents (DMAs) and their adherence trajectories in patients with multiple sclerosis (MS). However, previous studies have not considered longitudinal adherence patterns while evaluating oral DMAs. OBJECTIVES: This study aimed to evaluate the association of oral DMAs and their adherence trajectories with annualized relapse rate (ARR) in patients with MS. METHODS: This retrospective observational cohort study based on the 2015-2019 MarketScan Commercial Claims and Encounters Database involved continuous enrolled adults (18-64 years) with ≥1 MS diagnosis (ICD-9/10-CM:340/G35) and ≥ 1 oral DMA prescription. Patients were grouped into incident fingolimod (FIN), teriflunomide (TER), and dimethyl fumarate (DMF) users based on the index DMA with a one-year washout period. Annual DMA adherence trajectories based on the monthly Proportion of Days Covered (PDC) one year after treatment initiation were identified using Group-Based Trajectory Modeling (GBTM). The validated claims-based ARR was evaluated during the one-year follow-up period using generalized boosted model-based inverse probability treatment weights with negative binomial regression model. RESULTS: The study cohort consisted of 994 MS patients who initiated with FIN (23.0%), TER (22.3%), and DMF (54.7%) during the study period. GBTM grouped eligible patients into three adherence trajectories: complete adherers (59.2%), slow decliners (23.8%), and rapid decliners (17.0%). The proportion of complete adherers varied across the oral DMAs (FIN: 67.1%, TER: 55.4%, and DMF: 57.4%). The negative binomial regression modeling revealed that, while there was no difference in ARR across the three DMAs, rapid decliners (adjusted incidence rate ratio[aIRR]: 1.6, 95% CI: 1.1-2.4) had a higher rate of relapses compared to completely adherent patients. The type of oral DMAs did not moderate the relationship between ARR and the adherence trajectory groups. CONCLUSIONS: Adherence trajectories classified as rapid decliners were associated with a higher ARR than complete adherers after adjusting for their type of oral DMAs. Longitudinal medication adherence patterns are critical in reducing relapse rates in MS.


Subject(s)
Crotonates , Dimethyl Fumarate , Fingolimod Hydrochloride , Hydroxybutyrates , Medication Adherence , Nitriles , Recurrence , Toluidines , Humans , Adult , Female , Male , Medication Adherence/statistics & numerical data , Middle Aged , Crotonates/administration & dosage , Crotonates/therapeutic use , Retrospective Studies , Toluidines/administration & dosage , Toluidines/therapeutic use , Young Adult , Dimethyl Fumarate/administration & dosage , Dimethyl Fumarate/therapeutic use , Fingolimod Hydrochloride/therapeutic use , Fingolimod Hydrochloride/administration & dosage , Adolescent , Multiple Sclerosis/drug therapy , Administration, Oral , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/therapeutic use , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Immunologic Factors/administration & dosage
14.
Int J Biol Macromol ; 266(Pt 2): 131199, 2024 May.
Article in English | MEDLINE | ID: mdl-38574917

ABSTRACT

The objective of this study was to prepare biocomposites through the solution casting method followed by compression moulding in which bacterial cellulose (BC) deposited flax fabric (FF) produced through fermentation is coated with minimal amount of polylactic acid (PLA) and polyhydroxybutyrate (PHB). Biocomposites incorporated with 60 % of PLA or PHB (% w/w) show enhanced tensile strength. Cross-sectional morphology showed good superficial interaction of these biopolymers with fibres of FF thereby filling up the gaps present between the fibres. The tensile strength of biocomposites at 60 % PLA and 60 % PHB improved from 37.97 MPa (i.e., BC deposited FF produced in presence of honey) to 67.17 MPa and 56.26 MPa, respectively. Further, 0.25 % of nalidixic acid (NA) (% w/w) and 6 % of oleic acid (OA) (% w/w) incorporation into the biocomposites imparted prolonged antibacterial activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The in vitro cytotoxicity of biocomposites was determined using L929 mouse fibroblast cells. The 3-(4,5-cime- thylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide cytotoxicity tests showed that the PHB derived biocomposites along with antibacterial compounds in it were non-toxic. In vitro degradation of biocomposites was measured for up to 8 weeks in the mimicked physiological environment that showed a gradual rate of degradation over the period.


Subject(s)
Anti-Bacterial Agents , Cellulose , Flax , Hydroxybutyrates , Polyesters , Polyesters/chemistry , Cellulose/chemistry , Cellulose/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Animals , Hydroxybutyrates/chemistry , Hydroxybutyrates/pharmacology , Flax/chemistry , Tensile Strength , Textiles , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Escherichia coli/drug effects , Cell Line
15.
Medicina (Kaunas) ; 60(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38674218

ABSTRACT

Background: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disorder of the central nervous system characterized by autoimmune-mediated damage to oligodendrocytes and subsequent myelin destruction. Clinical implications: Clinically, the disease presents with many symptoms, often evolving over time. The insidious onset of MS often manifests with non-specific symptoms (prodromal phase), which may precede a clinical diagnosis by several years. Among them, headache is a prominent early indicator, affecting a significant number of MS patients (50-60%). Results: Headache manifests as migraine or tension-type headache with a clear female predilection (female-male ratio 2-3:1). Additionally, some disease-modifying therapies in MS can also induce headache. For instance, teriflunomide, interferons, ponesimod, alemtuzumab and cladribine are associated with an increased incidence of headache. Conclusions: The present review analyzed the literature data on the relationship between headache and MS to provide clinicians with valuable insights for optimized patient management and the therapeutic decision-making process.


Subject(s)
Headache , Multiple Sclerosis , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/drug therapy , Headache/etiology , Female , Migraine Disorders/drug therapy , Migraine Disorders/complications , Migraine Disorders/etiology , Toluidines/therapeutic use , Toluidines/adverse effects , Crotonates/therapeutic use , Hydroxybutyrates , Nitriles/therapeutic use , Nitriles/adverse effects , Tension-Type Headache/etiology , Male , Cladribine/therapeutic use
16.
PLoS One ; 19(3): e0300708, 2024.
Article in English | MEDLINE | ID: mdl-38517926

ABSTRACT

Researchers are increasingly using insights derived from large-scale, electronic healthcare data to inform drug development and provide human validation of novel treatment pathways and aid in drug repurposing/repositioning. The objective of this study was to determine whether treatment of patients with multiple sclerosis with dimethyl fumarate, an activator of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, results in a change in incidence of type 2 diabetes and its complications. This retrospective cohort study used administrative claims data to derive four cohorts of adults with multiple sclerosis initiating dimethyl fumarate, teriflunomide, glatiramer acetate or fingolimod between January 2013 and December 2018. A causal inference frequentist model averaging framework based on machine learning was used to compare the time to first occurrence of a composite endpoint of type 2 diabetes, cardiovascular disease or chronic kidney disease, as well as each individual outcome, across the four treatment cohorts. There was a statistically significantly lower risk of incidence for dimethyl fumarate versus teriflunomide for the composite endpoint (restricted hazard ratio [95% confidence interval] 0.70 [0.55, 0.90]) and type 2 diabetes (0.65 [0.49, 0.98]), myocardial infarction (0.59 [0.35, 0.97]) and chronic kidney disease (0.52 [0.28, 0.86]). No differences for other individual outcomes or for dimethyl fumarate versus the other two cohorts were observed. This study effectively demonstrated the use of an innovative statistical methodology to test a clinical hypothesis using real-world data to perform early target validation for drug discovery. Although there was a trend among patients treated with dimethyl fumarate towards a decreased incidence of type 2 diabetes, cardiovascular disease and chronic kidney disease relative to other disease-modifying therapies-which was statistically significant for the comparison with teriflunomide-this study did not definitively support the hypothesis that Nrf2 activation provided additional metabolic disease benefit in patients with multiple sclerosis.


Subject(s)
Cardiovascular Diseases , Crotonates , Diabetes Mellitus, Type 2 , Hydroxybutyrates , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Nitriles , Renal Insufficiency, Chronic , Toluidines , Adult , Humans , Immunosuppressive Agents/therapeutic use , Dimethyl Fumarate/therapeutic use , Multiple Sclerosis/complications , Multiple Sclerosis/drug therapy , Multiple Sclerosis/epidemiology , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Retrospective Studies , Cardiovascular Diseases/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Incidence , NF-E2-Related Factor 2 , Fingolimod Hydrochloride/therapeutic use , Renal Insufficiency, Chronic/drug therapy
17.
Arch Biochem Biophys ; 754: 109962, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499055

ABSTRACT

Acetohydroxyacid synthase (AHAS) is one of the key enzymes of the biosynthesis of branched-chain amino acids, it is also an effective target for the screening of herbicides and antibiotics. In this study we present a method for preparing Escherichia coli AHAS I holoenzyme (EcAHAS I) with exceptional stability, which provides a solid ground for us to re-investigate the in vitro catalytic properties of the protein. The results show EcAHAS I synthesized in this way exhibits similar function to Bacillus subtilis acetolactate synthase in its catalysis with pyruvate and 2-ketobutyrate (2-KB) as dual-substrate, producing four 2-hydroxy-3-ketoacids including (S)-2-acetolactate, (S)-2-aceto-2-hydroxybutyrate, (S)-2-propionyllactate, and (S)-2-propionyl-2-hydroxybutyrate. Quantification of the reaction indicates that the two substrates almost totally consume, and compound (S)-2-aceto-2- hydroxybutyrate forms in the highest yield among the four major products. Moreover, the protein also condenses two molecules of 2-KB to furnish (S)-2-propionyl-2-hydroxybutyrate. Further exploration manifests that EcAHAS I ligates pyruvate/2-KB and nitrosobenzene to generate two arylhydroxamic acids N-hydroxy-N-phenylacetamide and N-hydroxy-N-phenyl- propionamide. These findings enhance our comprehension of the catalytic characteristics of EcAHAS I. Furthermore, the application of this enzyme as a catalyst in construction of C-N bonds displays promising potential.


Subject(s)
Acetolactate Synthase , Escherichia coli , Acetolactate Synthase/chemistry , Glycogen Synthase , Hydroxybutyrates , Pyruvates , Holoenzymes
18.
Appl Microbiol Biotechnol ; 108(1): 265, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498113

ABSTRACT

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a type of polyhydroxyalkanoates (PHA) that exhibits numerous outstanding properties and is naturally synthesized and elaborately regulated in various microorganisms. However, the regulatory mechanism involving the specific regulator PhaR in Haloferax mediterranei, a major PHBV production model among Haloarchaea, is not well understood. In our previous study, we showed that deletion of the phosphoenolpyruvate (PEP) synthetase-like (pps-like) gene activates the cryptic phaC genes in H. mediterranei, resulting in enhanced PHBV accumulation. In this study, we demonstrated the specific function of the PPS-like protein as a negative regulator of phaR gene expression and PHBV synthesis. Chromatin immunoprecipitation (ChIP), in situ fluorescence reporting system, and in vitro electrophoretic mobility shift assay (EMSA) showed that the PPS-like protein can bind to the promoter region of phaRP. Computational modeling revealed a high structural similarity between the rifampin phosphotransferase (RPH) protein and the PPS-like protein, which has a conserved ATP-binding domain, a His domain, and a predicted DNA-binding domain. Key residues within this unique DNA-binding domain were subsequently validated through point mutation and functional evaluations. Based on these findings, we concluded that PPS-like protein, which we now renamed as PspR, has evolved into a repressor capable of regulating the key regulator PhaR, and thereby modulating PHBV synthesis. This regulatory network (PspR-PhaR) for PHA biosynthesis is likely widespread among haloarchaea, providing a novel approach to manipulate haloarchaea as a production platform for high-yielding PHA. KEY POINTS: • The repressive mechanism of a novel inhibitor PspR in the PHBV biosynthesis was demonstrated • PspR is widespread among the PHA accumulating haloarchaea • It is the first report of functional conversion from an enzyme to a trans-acting regulator in haloarchaea.


Subject(s)
Polyhydroxyalkanoates , Polyhydroxyalkanoates/metabolism , Hydroxybutyrates , DNA , Polyesters/metabolism
19.
Biotechnol Adv ; 72: 108340, 2024.
Article in English | MEDLINE | ID: mdl-38537879

ABSTRACT

As an energy-storage substance of microorganisms, polyhydroxybutyrate (PHB) is a promising alternative to petrochemical polymers. Under appropriate fermentation conditions, PHB-producing strains with metabolic diversity can efficiently synthesize PHB using various carbon sources. Carbon-rich wastes may serve as alternatives to pure sugar substrates to reduce the cost of PHB production. Genetic engineering strategies can further improve the efficiency of substrate assimilation and PHB synthesis. In the downstream link, PHB recycling strategies based on green chemistry concepts can replace PHB extraction using chlorinated solvents to enhance the economics of PHB production and reduce the potential risks of environmental pollution and health damage. To avoid carbon loss caused by biodegradation in the traditional sense, various strategies have been developed to degrade PHB waste into monomers. These monomers can serve as platform chemicals to synthesize other functional compounds or as substrates for PHB reproduction. The sustainable potential and cycling value of PHB are thus reflected. This review summarized the recent progress of strains, substrates, and fermentation approaches for microbial PHB production. Analyses of available strategies for sustainable PHB recycling were also included. Furthermore, it discussed feasible pathways for PHB waste valorization. These contents may provide insights for constructing PHB-based comprehensive biorefinery systems.


Subject(s)
Polyhydroxybutyrates , Polymers , Polymers/chemistry , Fermentation , Carbohydrates , Carbon/chemistry , Hydroxybutyrates/analysis , Hydroxybutyrates/chemistry , Hydroxybutyrates/metabolism
20.
Int J Biol Macromol ; 266(Pt 1): 130990, 2024 May.
Article in English | MEDLINE | ID: mdl-38508553

ABSTRACT

This study investigated the effect of polymer blending of microbially produced poly[(R)-lactate-co-(R)-3-hydroxybutyrate] copolymers (LAHB) with poly(lactate) (PLA) on their mechanical, thermal, and biodegradable properties. Blending of high lactate (LA) content and high molecular weight LAHB significantly improved the tensile elongation of PLA up to more than 250 % at optimal LAHB composition of 20-30 wt%. Temperature-modulated differential scanning calorimetry and dynamic mechanical analysis revealed that PLA and LAHB were immiscible but interacted with each other, as indicated by the mutual plasticization effect. Detailed morphological characterization using scanning probe microscopy, small-angle X-ray scattering, and solid-state NMR confirmed that PLA and LAHB formed a two-phase structure with a characteristic length scale as small as 20 nm. Because of mixing in this order, the polymer blends were optically transparent. The biological oxygen demand test of the polymer blends in seawater indicated an enhancement of PLA biodegradation during biodegradation of the polymer blends.


Subject(s)
Polyesters , Polyesters/chemistry , Polyesters/metabolism , Polymers/chemistry , Polymers/metabolism , Hydroxybutyrates/chemistry , Hydroxybutyrates/metabolism , Temperature , Molecular Weight , Biodegradation, Environmental
SELECTION OF CITATIONS
SEARCH DETAIL
...